Product Categories

Tel: + 86 -769 3901 6600 / 6601/ 6602

Fax: +86 -769 3901 6604

Cell: +86 139 292 00587

Skype: PLB

WhatsApp: +86 13929200587

WeChat: + 86 13929200587

Email: support@powerlongbattery.com

Factory Add: No. 401, Technology Road, Qixing Town, Dongguan City, PRC.

Home > News > Content
The New Nano-layered Electrode Can Greatly Improve The Battery Performance
- Oct 11, 2017 -

新型纳米层状电极可大幅提升电池性能

The reporter learns from hefei university of technology, the scientific research personnel by adjusting the layered structure of transition metal disulfide belong to compound interlayer distance between molecules, implements the electrode electrochemical energy storage materials and catalytic performance improved, for the development of high-performance electric catalytic and energy storage device has opened up a new path.

The research has been published in international important journals such as nano energy and advanced energy materials.

Layered disulfide belong to transitional metal nano films with layer controllable, single-layer thickness thin, two-dimensional channel between the layers rich, the interlayer characteristics such as large surface area, excellent electrochemical performance, in the secondary battery, super capacitor, electric catalytic and electrochemical device has good development prospects.

However, due to the narrow distance between the layers of the traditional laminated materials, the resistance of ions between the layers of the material is larger, thus limiting its electrochemical properties.

Hefei university of technology institute of electronic science and applied physics professor huh handsome team, in collaboration with the city university of Hong Kong researchers, the layer spacing of molybdenum disulfide nanometres wide is changed from 0.615 to 0.99 nm, which promote the rapid transmission of sodium ions, improve the electronic conductivity of the material.

The experimental results show that the nanometer material with the width of the layer is wide, and the performance of electrode material and the stability of energy storage can be greatly improved.

"By the external force to broaden the distance between the, can significantly reduce plasma lithium, sodium, magnesium transfer resistance between the layers, thus improving these nanomaterials in ion electrochemical properties of embedded type energy storage device."

Huh handsome professor, said that the results can be used in lithium ion batteries, sodium, magnesium ion battery and super capacitor, thus greatly improve the performance of energy storage device to produce high performance energy storage battery and found a new way to kedi.